كيف تنطبق الاحصائيات على مارس الجنون

Posted on
مؤلف: Monica Porter
تاريخ الخلق: 21 مارس 2021
تاريخ التحديث: 18 شهر نوفمبر 2024
Anonim
مونتاج رهيب عن المهندس توني كروس📽 فنيات وتمريرات خرافية🌟 بصوت الشوالي والعتيبي🎶🎵
فيديو: مونتاج رهيب عن المهندس توني كروس📽 فنيات وتمريرات خرافية🌟 بصوت الشوالي والعتيبي🎶🎵

المحتوى

بالنسبة لعشاق الرياضة ، يعد March Madness أحد أبرز الأحداث في هذا العام. ابتداءً من منتصف شهر مارس ، يصادف هذا الحدث السنوي أفضل الفرق في كرة السلة الجامعية في NCAA ضد بعضها البعض ، في دورة خروج المغلوب الضخمة التي تتكون من 64 فريقًا.


هذا هو المكان الأمور مثيرة للاهتمام. يعني جانب الضربة القاضية وجود فرصة دائمًا للاضطرابات والمجد غير المتوقع. من سيفوز بالبطولة؟ هل سيكون هناك انزعاج عندما يتقدم فريق "سندريلا" إلى أبعد مما تتوقع ، أم أنه سيهزم جميعهم في الجولات الأولى؟ يستطيع أنت توقع قوس كامل؟

لتبدو أعمق ، سيتعين علينا استخدام بعض الرياضيات ، ومعرفة كيفية تطبيق الإحصاءات على March Madness.

ICYMI: تحقق من دليل Sciencings حتى 2019 March Madness ، مع استكمال الإحصاءات لمساعدتك على ملء شريحة رابحة.

أساسيات الاحتمالات

قبل أن ندخل في تطبيق الإحصائيات والاحتمالات إلى March Madness ، من المهم تغطية أساسيات الاحتمالات.

احتمال حدوث شيء هو ببساطة:

{Probability} = { {عدد النتائج التي تريدها} أعلاه {1pt} {عدد النتائج المحتملة}}

هذا ينطبق فقط على أي الوضع مع النتائج المحتملة على قدم المساواة المحتملة. لذلك ، على سبيل المثال ، يكون لرمي يموت ذي ستة جوانب قياسي احتمال 1/6 بزيادة الرقم ستة ، لأن هناك نتيجة واحدة فقط تريد وستة نتائج ممكنة. الاحتمالات هي دائمًا أرقام (يتم التعبير عنها ككسور أو أرقام عشرية) بين 0 و 1 ، بمعنى 0 لا توجد أي فرصة على الإطلاق لحدوث الحدث و 1 يعني أنه يقين.


ولكن إذا كنت تفكر في شيء أكثر تعقيدًا ، مثل لعبة كرة السلة ، فهناك الكثير مما يجب التفكير فيه. يمكنك أن تقول إن احتمالات فوز أي فريق ضد أي فريق آخر هي 1/2 ، لكن المباراة بين ديوك وبيتسبيرغ ليست بالكاد مجرد نقود معدنية. هذا هو المكان الذي يلعب فيه نظام البذر والإحصاءات التابع ل NCAA.

احتمالات مسيرة الجنون

إذا كيف يمكنك التعامل مع مشكلة تطبيق الاحتمالات على مارس الجنون؟ أولاً ، أنت بحاجة إلى طريقة ما للنظر في الاحتمال الفعلي لأن يتغلب أي فريق على الآخر. هذه مهمة صعبة للغاية ، ولكن تم تصميم نظام البذار من قبل NCAA بشكل أساسي بتقسيم الفرق إلى "طبقات" بناءً على مدى جودتها.

على سبيل المثال ، في الألعاب منذ عام 1985 حيث لعبت البذور رقم 1 في البذور رقم 16 ، فازت المصنفة الأولى بنسبة 99 في المئة من الوقت. بمعنى ، من بين 100 لعبة (لأن النسبة المئوية هي "لكل مائة") ، يمكنك أن تتوقع الفوز بالبطولة رقم 16 في واحدة منها.

انظر إلى الصيغة الأساسية مرة أخرى:

{Probability} = { {عدد النتائج التي تريدها} أعلاه {1pt} {عدد النتائج المحتملة}}

من بين 100 نتيجة "فوز" محتملة ، كان هناك فوز واحد فقط (النتيجة التي نريدها). هذا يعطي على الفور الاحتمال 1/100.


يمكنك أن تأخذ هذا أبعد من ذلك عن طريق استخدام الأماكن التي انتهت فيها الفرق المختلفة في البطولة للنظر في احتمال فوز كل فريق. في 32 من أصل 34 بطولة ، حققت واحدة على الأقل من المصنفات الأولى في النهائيات الأربعة ، حيث أعطت المصنف رقم 1 هذا العام فرصة 32/34 (أو 16/17) للوصول إلى هناك. بالإضافة إلى ذلك ، حققت واحدة على الأقل من البذور رقم واحد لعبة البطولة 26/34 مرة ، مما يعطي احتمال 13/17. بالنسبة للبذور رقم 2 ، سينخفض ​​هذا إلى 22/34 (أو 11/17) في النهائيات الأربعة و 13/34 لمباراة البطولة. بالإضافة إلى ذلك ، فازت المصنفة الأولى رقم 21/34 مرة ، وكانت الفائزة من بين أفضل ثلاث بذور 30/34 = 15/17 مرة.

يمكنك أيضًا استخدام هذه الإحصاءات نفسها للتفكير في الفرق التي ليس لها أي فرصة للفوز. يُظهر تحليل البطولات منذ عام 1985 أنه لم تصل أي البذور من الرقم 9 إلى الرقم 16 إلى النهائي ، لذا فإن اختيار واحدة من هذه الألعاب لأن الفائز سيكون خطأً كبيرًا.

عندما يتعلق الأمر بمحاولة اختيار شريحة كاملة ، تظهر الإحصاءات نفسها أنه يوجد في المتوسط ​​ثمانية اضطرابات كل عام. هذا لا يساعدك على القول أين ستكون كذلك ، ولكن إذا كنت تتوقع حدوث اضطرابات أكثر أو أقل من ذلك ، فقد ترغب في إعادة التفكير في اختياراتك.

هل هذا يكفي لاختيار فائز؟

لذا فإن التحليل الأساسي الذي يبحث في الاحتمالات بناءً على رقم البذور يمكن أن يجعلك بعيدًا عندما يتعلق الأمر بالتنبؤ بما سيفوز March Madness ، لكن هل هو حقًا كافية لجعل اختيارك؟

يبدو واضحًا أن لعبة كرة السلة أكثر من تصنيفات الفريق أو حتى أدائها السابق. إحصائيات رئيسية أخرى ، مثل النسبة المئوية للرميات الحرة الناجحة لفريق ما ، ومتوسط ​​عدد مرات الدوران لكل لعبة ، ونسبة نجاح أهدافها الميدانية والعديد من العوامل الأخرى.

سيكون التوصل إلى صيغة واضحة لاحتمال الفوز استنادًا إلى كل هذا أمرًا معقدًا ، لكن هذا يمنحك فكرة عن نوع الأشياء التي تحتاج إلى أخذها في الاعتبار لملء قوسك قدر الإمكان.

على سبيل المثال ، إذا كان لديك فريق أساسي رقم 2 يقود المجموعة في النسبة المئوية للهدف الميداني ولديه عدد قليل جدًا من عمليات الدوران لكل لعبة ، فسيكون اختيارًا قويًا للفائز على الرغم من أن التحليل على أساس البذور وحده يوحي بأنها لم يكن الخيار المثالي. أفضل نصيحة هي أن تبني اختياراتك الأولية على البذور ، ثم تستخدم إحصائيات أخرى لتعديل صيغتك عقليًا حتى تستقر على فريق أنت سعيد به.

شعور روح مسيرة الجنون؟ تحقق من النصائح والحيل الخاصة بنا لملء شريحة ، واقرأ سبب صعوبة التنبؤ بالاضطرابات واختيار شريحة مثالية.