المحتوى
الضغط ، في الفيزياء ، هو القوة مقسوما على مساحة الوحدة. القوة ، بدورها ، تسارع أوقات الكتلة. وهذا ما يفسر لماذا يكون المغامر الشتوي أكثر أمانًا على الجليد ذي السماكة المشكوك فيها إذا كان مستلقًا على السطح بدلاً من الوقوف منتصباً ؛ القوة التي يمارسها على الجليد (أوقات كتلته تتسارع إلى الأسفل بسبب الجاذبية) هي نفسها في كلتا الحالتين ، ولكن إذا كان مستلقياً بدلاً من الوقوف على قدمين ، فإن هذه القوة موزعة على مساحة أكبر ، وبالتالي خفض ضغط يوضع على الجليد.
المثال أعلاه يتعامل مع الضغط الثابت - أي أنه لا يوجد شيء في هذه "المشكلة" يتحرك (ونأمل أن يبقى هكذا!). يختلف الضغط الديناميكي ، حيث يتضمن حركة الأجسام عبر السوائل - أي السوائل أو الغازات - أو تدفق السوائل نفسها.
معادلة الضغط العامة
كما لوحظ ، يتم تقسيم الضغط حسب المنطقة ، والقوة هي تسارع أوقات الكتلة. كتلة (م) ، ومع ذلك ، يمكن كتابتها أيضًا كمنتج للكثافة (ρ) وحجم (الخامس) ، لأن الكثافة هي مجرد كتلة مقسومة على الحجم. هذا هو ، منذ ذلك الحين ρ = م/الخامس, م = ρV. أيضًا ، بالنسبة إلى الأشكال الهندسية المعتادة ، فإن الحجم المقسوم حسب المساحة ينتج عنه ببساطة ارتفاع.
هذا يعني أنه ، على سبيل المثال ، عمود من السوائل يقف في اسطوانة ، الضغط (P) يمكن التعبير عنها بالوحدات القياسية التالية:
P = {mg above {1pt} A} = {ρVg above {1pt} A} = ρg {V above {1pt} A} = ρghهنا، هيدروجين هو العمق تحت سطح السائل. هذا يكشف أن الضغط عند أي عمق للسوائل لا يعتمد فعليًا على مقدار السائل الموجود ؛ قد تكون في خزان صغير أو المحيط ، والضغط يعتمد فقط على العمق.
الضغط الديناميكي
من الواضح أن السوائل لا تجلس فقط في الخزانات. يتحركون ، وغالبًا ما يتم ضخهم عبر الأنابيب للوصول من مكان إلى آخر. تمارس السوائل المتحركة ضغطًا على الأشياء الموجودة داخلها تمامًا كما تفعل السوائل الدائمة ، لكن المتغيرات تتغير.
ربما تكون قد سمعت أن إجمالي الطاقة لجسم ما هو مجموع طاقته الحركية (طاقة حركته) وطاقته الكامنة (الطاقة التي "يخزنها" في فصل الربيع أثناء التحميل أو تكون أعلى بكثير من الأرض) ، وهذا المجموع لا يزال ثابتا في النظم المغلقة. وبالمثل ، فإن الضغط الكلي للسائل هو ضغطه الثابت ، الذي يعطى بواسطة التعبير ρgh المشتقة أعلاه ، يضاف إلى ضغطها الديناميكي ، المعطى من قبل التعبير (1/2) ρv2.
معادلة برنولي
القسم أعلاه هو اشتقاق لمعادلة حرجة في الفيزياء ، مع انعكاسات على أي شيء يتحرك من خلال السوائل أو التجارب تتدفق نفسها ، بما في ذلك الطائرات ، والمياه في نظام السباكة ، أو كرات الأساس. رسميا ، هو عليه
P_ {total} = ρgh + {1 above {1pt} 2} ^v ^ 2هذا يعني أنه إذا دخل السائل إلى نظام عبر أنبوب بعرض معين وبارتفاع معين وترك النظام عبر أنبوب ذو عرض مختلف وبارتفاع مختلف ، فإن الضغط الكلي للنظام سيبقى ثابتًا.
تعتمد هذه المعادلة على عدد من الافتراضات: أن كثافة السائل ρ لا يتغير ، تدفق السائل هذا ثابت ، وهذا الاحتكاك ليس عاملاً. حتى مع هذه القيود ، المعادلة مفيدة بشكل غير عادي. على سبيل المثال ، من معادلة Bernoulli ، يمكنك تحديد أنه عندما يترك الماء قناة ذات قطر أصغر من نقطة دخوله ، فإن الماء سوف يسافر بشكل أسرع (وهو أمر سهل على الأرجح ؛ تظهر الأنهار سرعة أكبر عند المرور عبر القنوات الضيقة ) ويكون ضغطها عند السرعة الأعلى أقل (وهو أمر غير بديهي على الأرجح). هذه النتائج تتبع من الاختلاف في المعادلة
P_1 - P_2 = {1 أعلاه {1pt} 2} ρ ({v_2} ^ 2 - {v_1} ^ 2)وبالتالي ، إذا كانت المصطلحات موجبة وكانت سرعة الخروج أكبر من سرعة الدخول (أي ، الخامس2 > الخامس1) ، يجب أن يكون ضغط الخروج أقل من ضغط الدخول (أي ، P2 < P1).